الرياضيات المتناهية الأمثلة

خطوة 1
بادِل المتغيرات.
خطوة 2
أوجِد قيمة .
انقر لعرض المزيد من الخطوات...
خطوة 2.1
أعِد كتابة المعادلة في صورة .
خطوة 2.2
أعِد كتابة العبارة باستخدام قاعدة الأُسس السالبة .
خطوة 2.3
أوجِد القاسم المشترك الأصغر للحدود في المعادلة.
انقر لعرض المزيد من الخطوات...
خطوة 2.3.1
يُعد إيجاد القاسم المشترك الأصغر لقائمة القيم بمثابة إيجاد المضاعف المشترك الأصغر لقواسم تلك القيم.
خطوة 2.3.2
المضاعف المشترك الأصغر لإحدى العبارات ولأي منها هو العبارة.
خطوة 2.4
اضرب كل حد في في لحذف الكسور.
انقر لعرض المزيد من الخطوات...
خطوة 2.4.1
اضرب كل حد في في .
خطوة 2.4.2
بسّط الطرف الأيسر.
انقر لعرض المزيد من الخطوات...
خطوة 2.4.2.1
ألغِ العامل المشترك لـ .
انقر لعرض المزيد من الخطوات...
خطوة 2.4.2.1.1
ألغِ العامل المشترك.
خطوة 2.4.2.1.2
أعِد كتابة العبارة.
خطوة 2.5
أوجِد حل المعادلة.
انقر لعرض المزيد من الخطوات...
خطوة 2.5.1
أعِد كتابة المعادلة في صورة .
خطوة 2.5.2
اقسِم كل حد في على وبسّط.
انقر لعرض المزيد من الخطوات...
خطوة 2.5.2.1
اقسِم كل حد في على .
خطوة 2.5.2.2
بسّط الطرف الأيسر.
انقر لعرض المزيد من الخطوات...
خطوة 2.5.2.2.1
ألغِ العامل المشترك لـ .
انقر لعرض المزيد من الخطوات...
خطوة 2.5.2.2.1.1
ألغِ العامل المشترك.
خطوة 2.5.2.2.1.2
اقسِم على .
خطوة 3
Replace with to show the final answer.
خطوة 4
تحقق مما إذا كانت هي معكوس .
انقر لعرض المزيد من الخطوات...
خطوة 4.1
للتحقق من صحة المعكوس، تحقق مما إذا كانتا و.
خطوة 4.2
احسِب قيمة .
انقر لعرض المزيد من الخطوات...
خطوة 4.2.1
عيّن دالة النتيجة المركّبة.
خطوة 4.2.2
احسِب قيمة باستبدال قيمة في .
خطوة 4.2.3
انقُل إلى بسط الكسر باستخدام قاعدة الأُسس السالبة .
خطوة 4.3
احسِب قيمة .
انقر لعرض المزيد من الخطوات...
خطوة 4.3.1
عيّن دالة النتيجة المركّبة.
خطوة 4.3.2
احسِب قيمة باستبدال قيمة في .
خطوة 4.3.3
غيّر علامة الأُس بإعادة كتابة الأساس في صورة مقلوبه.
خطوة 4.4
بما أن و، إذن هي معكوس .